31 research outputs found

    Modeling of GaInP/GaAs dual junction solar cells including tunnel junction

    Get PDF
    This paper presents research efforts conducted at the IES-UPM in the development of an accurate, physically-based solar cell model using the generalpurpose ATLASR device simulator by Silvaco. Unlike solar cell models based on a combination of discrete electrical components, this novel model extracts the electrical characteristics of a solar cell based on virtual fabrication of its physical structure, allowing for direct manipulation of materials, dimensions, and dopings. As single junction solar cells simulation was yet achieved, the next step towards advanced simulations of multi-junction cells (MJC) is the simulation of the tunnel diodes, which interconnect the subcells in a monolithic MJC. The first results simulating a Dual- Junction (DJ) GaInP/GaAs solar cells are shown in this paper including a complete Tunnel Junction (TJ) model and the resonant cavity effect occurring in the bottom cell. Simulation and experimental results were compared in order to test the accuracy of the models employed

    Tunnel diode modeling, including nonlocal trap-assisted tunneling: A focus on III-V multijunction solar cell simulation

    Get PDF
    Multijunction solar cells (MJCs) based on III-V semiconductors constitute the state-of-the-art approach for high-efficiency solar energy conversion. These devices, consisting of a stack of various solar cells, are interconnected by tunnel diodes. Reliable simulations of the tunnel diode behavior are still a challenge for solar cell applications. In this paper, a complete description of the model implemented in Silvaco ATLAS is shown, demonstrating the importance of local and nonlocal trap-assisted tunneling. We also explain how the measured doping profile and the metalization-induced series resistance influence the behavior of the tunnel diodes. Finally, we detail the different components of the series resistance and show that this can help extract the experimental voltage drop experienced by an MJC due to the tunnel junction. The value of this intrinsic voltage is important for achieving high efficiencies at concentrations near 1000 suns

    Distributed Simulation of Real Tunnel Junction Effects in Multi-Junction Solar Cells

    Full text link
    In this paper, we present an improved 3D distributed model that considers real operation regimes in a tunnel junction. This advanced method is able to accurately simulate the high concentrations at which the current in the solar cell surpasses the peak current of the tunnel junction. Simulations of dual-junction solar cells were carried out with different light profiles and including chromatic aberration to show the capabilities of the model. Such simulations show that, under some circumstances, the solar cell short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading towards the dark regions, which occurs through the anode region of the tunnel junction

    Electroluminescence characterization for III-V multi-junction solar cells

    Full text link
    Characterization is a key process in attaining high efficiency in the state-of-the-art multi-junction solar cells. This work will summarize our efforts in using eletroluminescence for characterising multijunction solar cells. This study will present the possibilities of electroluminescence (EL) spectroscopy as a fast and simple characterization technique which is able to provide extensive information about the solar cell’s performance. Finally, four of the applications of this technique will be presented: band gap estimation, barrier effect for minority carriers, information on the thermal performance of encapsulated devices and determination of the shunt resistance of each cell in a dual junction device

    Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators

    Get PDF
    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature

    CPVMatch - Concentrating photovoltaic modules using advanced technologies and cells for highest efficiencies

    Get PDF
    This paper presents the project Concentrating Photovoltaic modules using advanced technologies and cells for highest efficiencies (CPVMatch), which is funded from the European Union’s Horizon 2020 research and innovation programme. V multi-junction solar cells and CPV modules. Concerning cells, novel wafer bonded four-junction solar cells made of GaInP/GaAs//GaInAs/Ge are optimized with the target of reaching 48% efficiency under concentration at the end of the project. Moreover, multi-junction solar cell technologies with advanced materials - like ternary IV element mixtures (i.e. SiGeSn) and nanostructured anti-reflective coatings - are investigated. Concerning CPV modules the project focuses on both Fresnel-based and mirror-based technologies with a target efficiency of 40% under high concentrations beyond 800x. Achromatic Fresnel lenses for improved light management without secondary optics are investigated. In addition, smart, mirror-based HCPV modules are developed, which include a new mirror-based design, the integration of high efficiency, low cost DC/DC converters and an intelligent tracking sensor (PSD sensor) at module level. A profound life-cycle and environmental assessment and the development of adapted characterization methods of new multi-junction cells and HCPV modules complete the work plan of CPVMatch

    NGCPV: a new generation of concentrator photovoltaic cells, modules and systems

    Get PDF
    Starting on June 2011, NGCPV is the first project funded jointly between the European Commission (EC) and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to research on new generation concentration photovoltaics (CPV). The Project, through a collaborative research between seven European and nine Japanese leading research centers in the field of CPV, aims at lowering the cost of the CPVproduced photovoltaic kWh down to 5 ?cents. The main objective of the project is to improve the present concentrator cell, module and system efficiency, as well as developing advanced characterization tools for CPV components and systems. As particular targets, the project aims at achieving a cell efficiency of at least 45% and a CPV module with an efficiency greater than 35%. This paper describes the R&D activities that are being carried out within the NGCPV project and summarizes some of the most relevant results that have already been attained, for instance: the manufacturing of a 44.4% world record efficiency triple junction solar cell (by Sharp Corp.) and the installation of a 50 kWp experimental CPV plant in Spain, which will be used to obtain accurate forecasts of the energy produced at system level

    A Tool to Characterize the Electrical Influence of the Thermal and Mechanical Behaviors of Materials of Optics for CPV applications

    No full text
    International audienceConcentrating Photovoltaics (CPV) field aims to integrate expensive high efficiency multi-junction cells into modules with low cost concentrating optics. The choice of the optics depends on different factors: easiness of fabrication and integration process, added costs, optical efficiency and the profile of the spot uniformity reaching the cell. Indeed, previous work has shown a dependence between electrical performance and spectral and spatial uniformities of the light on the cell. To analyze it, a solar CPV test bench is developed at CEA-INES facilities. Lens and cell temperature can be applied separately, in order to evaluate independently different test conditions, while electrical or optical parameters are recorded. The present work shows how temperature and mechanical variations on first stage concentrating optic affects module performances. Several optics and materials are compared, in order to present the tool capabilitie
    corecore